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Abstract—The collision of two natural-convection boundary layers at the tip of a vertical wedge is used
to demonstrate that a double-deck flow structure provides a proper description of the heat-convection
mechanism which is shared by many convection problems with sudden geometry changes. The present
theory differs from previous work which indicate the existence of recirculating flow regions. This difference
is due to a failure to recognize that recirculating flow structures can only exist for forced flows, but not for
natural-convection boundary layers or wall jets. The present solution is obtained by a proper application
of Prandtl’s transposition theorem for geometries with finite solid displacements and appropriately matches
the upstream natural-convection boundary layers and the downstream thermal plume. The interaction of
the local pressure development in the main deck (outer layer) and the displacement of the lower deck (inner
layer) removes the singularity associated with the boundary-layer equations at the location where the
viscous layers leave the solid surface.

1. INTRODUCTION

THE COLLISION of two boundary layers which are
driven by body forces are frequently found in fluid
flows. Examples include flows near the equator of a
spinning sphere [1,2], natural-convection boundary
layers near the top of a blunt body [3—5] or in a cavity,
and secondary boundary layers in a curved pipe
[6-8], or in a heated straight pipe [9]. Since the boun-
dary-layer equations are parabolic and are not affec-
ted by downstream activities, the collision phenomena
cannot be adequately described by the boundary-layer
equations alone. Independently, Messiter [10] and
Smith and Duck [11] developed a double-deck theory
which shows that a disturbance inside a boundary
layer driven by body forces (equivalently, a flow in
which the motion outside of the boundary layer is
much slower than that inside) can have an upstream
influence to a distance of O(¢®"), where ¢ = Re™"'? or
Gr~'*; Re is the appropriate Reynolds number for
forced flows and Gr is the Grashof number for natu-
ral-convection boundary layers. Messiter adopted the
natural-convection boundary layer along a finite ver-
tical flat plate as a model problem to show, by this
double-deck structure, that the boundary-layer solu-
tion on the plate can smoothly join the solution of the
thermal plume [12] above the plate. The structure of
the double deck shares many similarities with the tri-
ple-deck structure near the trailing edge of a flat plate
in a uniform stream [13, 14]. Smith and Duck were
interested in developing a general theory to describe
the collision of two non-parallel wall layers. They
conjectured that the main boundary layer separates
at a distance O(Re~¥'*) from the location of the col-
lision and a relatively large recirculation flow exists
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below the main boundary layer. On the other hand,
such a recirculating flow has not been identified in the
numerical solution of the collision of boundary layers
near the equator of a spinning sphere or in experi-
ments of natural convection near the top of a blunt
body.

The first numerical solution of a double-deck flow
structure was obtained by Smith [15]. The model
problem studied by Smith involved a rotating disk, a
degenerate case of a rotating sphere. Two boundary
layers meet at the edge of the disk and form a free-
boundary flow. Since the boundary layers are parallel
and do not collide, no region of recirculating flow
exists. This problem shares many similarities with the
problem of natural convection along a vertical finite
plate [10, 16].

The results in a subséquent paper by Merkin and
Smith [17] clearly cast doubt on the validity of a
double-deck structure to describe the flow behavior
near a geometry change. The model problem studied
by Merkin and Smith is natural-convection boundary
layers near a corner, or the trailing edge of a vertical
wedge. They formulated the equations of a double-
deck structure for corners the angles of which differed
slightly from 180°, or for wedges of very small angles.
Their solutions show that recirculating eddies, which
are physically unrealistic and are not consistent with
expectation, exist even for these two limiting cases.

In this paper, natural convection along a vertical-
sharp wedge (see Fig. 1) is used to demonstrate that
the double deck is indeed a proper flow structure for
a weak collision of two boundary layers driven by
body forces. The key step in formulating the problem
is to choose a coordinate system in which regions of
different physics can be properly matched. Prandtl’s
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NOMENCLATURE
a  constant, equation (13) o  displacement, equations (1)
A displacement, equations (17) small parameter, equations (1)
b  constant, equations (26) n  boundary-layer coordinate, equations (4)
f  streamfunction, equations (4) #  dimensionless temperature, equations (1)
g  gravitational acceleration v kinematic viscosity
Gr  Grashof number, equations (1) p  density
/ wedge height 7 shear stress
k  thermal diffusivity ¢  half-wedge angle
P pressure ¥ streamfunction, equations (7).
T  temperature
x,y coordinates Subscripts
u, v velocities. b  natural-convection boundary layer
p  thermal plume
Greek symbols 1 double deck.
o tan ¢

MAIN DECK

INNER PLUME

FiG. 1. Physical model and coordinates.

coordinates, as extended by Yao [18], are found to be
suitable for the probic.ii and are applied to the double-
deck equations be.ore solving them numerically. The
details are d..cribed in Section 2.

Sections 3 and 4 briefly summarize the structure of
the natural-convection boundary layers on the wedge,
and the thermal plume above it. This establishes the
notation and the required matching conditions. The
double-deck equations are derived and solved in
Section 5. The reason why the collision is identified as
‘weak’ will become clear in the conclusion section.

A proper matching principle is required if a correct
matching between major regions of different physics
is to be achieved. For certain problems. The impor-
tance of the existence of a double-deck solution does
not rely on its contribution toward improving pre-
dictive capability in a small region. More important
is the fact that the structure provides a matching prin-
ciple among various regions which can occur in the
flow field of many heat-transfer and fluid-mechanics
problems involving large parameters without actually
solving the double-deck equations. On the other hand,
double decks may be the major part of the flow struc-
ture for the problem, e.g. as in impinging jets. A direct

numerical solution of the Navier—Stokes equations for
such problems frequently fails to provide an accurate
result due to a lack of resolution in those small regions.
A direct example to substantiate the above claim is
the problem solved in this paper.

Another implication of the solution presented in
this paper concerns the separation of a forced flow
under an unfavorable pressure gradient. The sep-
aration of such a forced flow may be interpreted as
the collision of two viscous layers, one driven by a
forced flow and the other by an induced recirculat-
ing flow. This model is in line with the fact that
Goldstein’s singularity is not removable for a bound-
ary layer driven by an adverse pressure gradient [19].
This fact, in turn, implies that the classical boundary-
layer/inviscid-flow structure assumed globally does
not yield a correct limiting description of the Navier—
Stokes equations. Two triple decks and/or double
decks may provide a proper structure with which to
match a forced flow with recirculating eddies at sep-
aration. More work is required to establish a firm
ground for this conjecture ; however, it may provide
the missing link in obtaining a solution for a large-
scale separation.
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2.FORMULATION

Cartesian coordinates (X, y) are used, and the cor-
responding velocities are (4, 7). The x-axis is aligned
with the direction of gravity. The half-wedge angle is
denoted by ¢ = tan~' o, and the height of the wedge
is [. The wall temperature is held at T, and the ambient
temperature is T, .

The details of the extension of Prandtl’s trans-
position theorem have been discussed by Yao [18, 20],
and a brief summary is sufficient. The dimensionless
variables in Prandtl’s coordinates are defined by

£ 7-85®
YT

(velocities)

5_ PP
~ pUL

(pressure)
T-T,
T T,-T,
(temperature)
£t = Gr = Bg(Ty— TV’
(Grashof number)

U, = v/aGr'?
(characteristic velocity)

M

Pr=vjx
(Prandtl number)
£>0
x<0

5:5/1:0()2:{ 0

tan ¢x,

(displacement)

where the subscript after a comma denotes a deriva-
tive. The dimensionless form of the equations of con-
tinuity, motion and energy with the Boussinesq
approximation for density p are

G+, =0
Gl g+ oy = — P 4+8 B+ 04+ (1+8L)iy,
~20 4l 35— 8 4eii 5]
04+ 00,48 ot = 8P —(1+8)P;—65 .0
628 gx+ (14 82)0 55— 28 48 45— 8 14D 5
8 sxoli+ 28 o4t c—28 40 40l 5]

N - 82 2
i :+50, = 210+ (1 +82),5

- 25.£é,£ﬁ - S,gfé,y]' (2)

In transformed space, the wedge is represented by
=0 for £ <0. This substantially simplifies the

numerical integration procedure in solving the above
equations.

The formulation of Merkin and Smith [17] applies
Prandtl’s transformation to their lower-deck equa-
tions, but not to their main-deck equations. This limits
the height of any geometric change to the same order
as the thickness of the lower deck. In the present
formulation, the lower deck is assumed to be parallel
to the solid surface ; therefore, it is not limited to cases
of vanishingly-small wedge angles. This extension is
achieved by a proper application of Prandtl’s trans-
formation to the main-deck equations. As has been
discussed by Yao [18,20], the complete set of boun-
dary-layer equations in Prandtl’s coordinates can only
be obtained by transforming the Navier-Stokes equa-
tions before adopting the boundary-layer approxima-
tion. Important terms can be erroneously ignored
if one applies Prandtl’s transformation directly to the
boundary-layer equations. It can be shown that, for
a wedge angle of O(e¥"), the present formulation is
almost identical to that of Merkin and Smith. The
only difference is that the displacement A for the pre-
sent formulation is measured from the surface of the
wedge, while theirs is measured from y = 0. Conse-
quently, the difference between the two solutions in
the physical space is O(he*”), where /4 represents the
normalized solid displacement of the geometry. In
other words, Merkin and Smith applied Stokes’
linearization to their main-deck formulation. This
limits their solution to very small 4. The present
solution agrees with that of Merkin and Smith in the
limit & — 0 (a vertical flat plate [16]).

The proper equations for the natural-convection
boundary layer before the collision, for the plume, and
for the double deck in Prandtl’s coordinates are de-
scribed below. They are valid for finite wedge angles.

3. NATURAL-CONVECTION
BOUNDARY LAYER

The scales for the natural-convection boundary
layer are well known : the thickness of the boundary
layer and the normal velocity are O(¢). The boundary-
layer coordinates are

xy=14%, p, = Jle. 3

The expansions for the velocities, the pressure and the
temperature are

4= (14+a?)(@dx) *fy(m) + . ..

6= —e(1+a®)(@x,) " "*Gfy —mf)+ ...
P=0+...

0=0,(n)+... C))

where subscript b is used to denote that the vari-
ables are associated with the boundary layer and
N, = yu/(4x,)"*. The prime denotes derivatives with
respect to #7,. The substitution of equations (3) and
(4) into equations (2), with terms of small orders
neglected, yields the equations for the natural-con-
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Fi1G. 2. Axial velocity of natural-convection boundary layer.

Fic. 3. Temperature distribution of natural-convection
boundary layer.

vection boundary layer. They are

VN 2 = —0/(1+a?)

1 14 ’ (5)
F;ab +31.6; = 0.

The associated boundary conditions are

ﬂb'__O’ fb=fé=05 6b=1'
(wall condition)

>0, fi, 6,-0
(matching with quiescent ambient). (6)

The solutions of equations (5) satisfying conditions
(6) can be easily obtained by numerical integration.
A typical axial velocity profile and temperature dis-
tribution are given in Figs. 2 and 3 for ¢ = 0°, 30° and
60°, respectively. It is clear that the magnitude of the
velocity decreases and the thickness of the boundary
layer increases for wedges of larger angles. This is
because the component of the buoyancy force parallel
to the surface of the wedge decreases when the wedge
angle increases. Consequently, the heat-transfer rate
and wall shear are smaller for a larger-angle wedge.

In Prandtl’s coordinates, the axial direction is not
parallel to the surface. Thus, the axial momentum
equation is the projection of the momentum equation
along the solid surface onto this axis. One would
expect that the solution of the axial momentum equa-
tion in Prandtl’s coordinates might be restricted to the
case of a small angle between the axial direction and
the surface. Therefore, the natural-convection boun-
dary-layer equations in the coordinates normal and
parallel to the wedge are solved independently in order
to find the restriction on Prandtl’s transformation.
The local wall heat flux and shear stress are compared.
It is found that these two quantities, predicted by
solving the equations in two different coordinate
systems, agree for all wedge angles (up to 85° in
our computations). However, since Prandtl’s trans-
formation is singular for a wedge with a half angle of
90° (a horizontal plane), it is reasonable to expect that
the computations will become increasingly difficult as
this limiting angle is approached.

4. THERMAL PLUME

An additional advantage of adopting Prandtl’s
coordinates is that the axial velocity of the trans-
formed natural-convection boundary layer is in line
with that of the near plume, and the two velocities
can be readily matched at x = 0. Consequently, the
distribution of velocity and temperature inside a ther-
mal plume for small £ is essentially similar to that
above a vertical plate of finite length [12], but with a
different initial condition. Since its structure is also
very similar to the Goldstein [19] near-wake solution
behind a flat plate, Yang’s solution [12] consists of
two parts, an inner plume and an outer plume. The
solution form is briefly outlined below.

The normal coordinate is defined as y, = y/¢ to be
consistent with the fact that the plume is thin. The
appropriate expansions for small y, (inner plume) are

¥ =GP+ ..

N
0=1+32)"P1 ' wgom+ ...

where
= A"y, (32"

A =2(1+a)R(0)

= %egm)
and  is the streamfunction and is introduced to
satisfy equation (2),. The governing equations for f;
and g, can be obtained by substituting equations (7)
into equations (2) and collecting terms of equal pow-
ers of x. The result is

VRS —f =0
R+ ®

1
—P—rg’é +2fogo—fogo = 0.
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The prime denotes the derivative with respect to the
appropriate independent variable.

The required conditions for the inner plume
become :

) n=0: fo=fy=g;=0
(symmetry condition) ; ©)
) noo: foon+a;
go—>n+a.

The expansions for y, ~ O(1) (outer plume) are

V= Yo (7,)+ G2 (5) + ... (10)
0 =0,(y,)+03H"O,(y)+ ...

where
¥, =201 +a’)f; and O, =0, =0,(x,=1).

Similarly, the governing equations for ¥’s and ®@’s
can be obtained from equations (10) and (2). They are

YW -, =0

(1)
Y0, —¥,0,=0
The solutions of equations (11) are
Y, = alil_lla‘P{)(yp) 12)

®, =a,i7 "0,

in order to match with the inner plume. It is obvious
that the structure of the solution for a plume above a
wedge is identical to that above a vertical plate. Its
solution can be found in ref. [16] and is not repeated
here. Constant a, can be determined from the numeri-
cal solution of equations (8); the result is

a, = lim [(2f)' —n] = 0.6185. (13)

5. DOUBLE-DECK STRUCTURE

Since the y-component of the velocity in the plume
is singular at ¥ = 0, a double-deck structure [10, 11]
is required to join the solutions of the natural-con-
vection boundary layer and the thermal plume. The
present formulation is for a finite solid displacement
and has not been derived before.

We will describe the double decks. Following
Messiter [10], the dimensions of the main deck are
£%7 x &. The stretched coordinates become

x
X = 56’/7
_ ] _ (14)
J1 e b-

The expansions of the dependent variables are
d=Y,(y)+eu(x, )+ ...
f=e",(x,y)+ ...

1(x1,x1) (15)

A

p=e""pi(x,y)+ ...
6=0,)+e7"0,(x,,y)+ ...

The equations governing the above dependent vari-
ables can be derived from equations (2). They are

au, avl
ax oy, =0

du
\Y,b(?—xi_'_ w, =0

il
0x,

dp, (16)
’ _ ALY
| S (1+oc)ayI
00,

‘Pba—xl

+0O.v, =0.

The solutions of the above equations can be expressed
as

u, =¥y(y)4,(x,)
v, = =¥ (y41(x))
A ("

1+a® },

0, = 0,(y)4,(x)).

The above equations show that 47 is not con-
tinuous at x, = 0, but that 4, and 4 are continuous.
This implies that u, and v, are continuous at x, = 0.
Consequently, the normal velocity in physical space
is not continuous due to the discontinuity of o (see
equations (1)). Physically, this discontinuous normal
velocity represents the colliding velocity component
of the two boundary layers. The advantage of adopt-
ing the Prandti transformation for the main deck is
that the discontinuity of the colliding velocity is
removed. This is the key reason why the present
numerical results do not contain physically unrealistic
recirculating eddies. Since the streamwise velocity
component is continuous at the collision, this suggests
that a ‘fine’ flow structure near the collision point
is required to smooth out this discontinuity, but its
contribution is smaller and less important to the pre-
sent problem. For a collision of two asymmetric natu-
ral-convection boundary layers, the direction of the
thermal plume immediately above the collision will be
determined by the fine flow structure in this small
region.

A lower deck is needed since solution (17) does
not satisfy the wall condition on the cylinder. The
thickness of the lower deck is O(¢¥7). Therefore,
p=2¢""y"""A7 ¥y, and the expansions of the depen-
dent variables, which match with the variables of the
surrounding areas, are

an

P =

Yo(y))? dy,

EN

=¥ A Tu(x, )+ ...
="y v(x, M+ ...
5=y A D)) + ...
6= 146¥7 AT 71, 0(x, ) + ...
A =y"AT T Ax)

(18)
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where
x =y,
and
V=L P dy,.
Substitution of equations (18) into equations (2) gives
ax " dy
ou Ou 1 dp 07U
ua +U@ = — ]+O(2 5 +(l+cx )W
op
hC 1
3 0 19)
0 00 (1+a°) 0’0

Yoax TV T T e ot

Expansions (19) must match with the boundary-layer
solution as x - — o0 so that
u—->y and ©®-y. (20)
As y — o0, they must also match with the main deck
u—y+A(x,) and O - y+A(x,). 2n

On the surface of the cylinder, y = 0 and x < 0, the
wall conditions are

U=p=0=0 22)
and
ou 00

are applied along y = 0 for x > 0. Finally, since the
normal pressure gradient vanishes across the lower
deck

A" (x).

p=p(y=0= 4

(1+a?)
Physically, A(x) represents the displacement effect of
the lower deck, and can be determined from the solu-
tion of the lower deck. The main-deck solution
matches with the boundary-layer solution as x - — o0
and the outer plume as x — co. This implies that

A(—0)—0 and A()—>a,(3x)"°. (25

An in-depth interpretation of A(x) and its role in
transmitting a disturbance upstream within these thin
wall layers can be found in refs. {10, 11 16].

Since « assumes different values for x <0 and
x >0 (see equations (1)), equations (19) must be
solved separately and then matched at x = 0. One
should note that the lower-deck solution can be
obtained by marching downstream without knowing
the upstream normal velocity component. Equations
(24) and (25) define a two-point boundary-value prob-
lem which transmits the disturbance upstream. Special
attention is required to obtain the solution of this
problem. The continuity of the displacement 4(x) and

L. S. Yao

its derivative is enforced in the numerical solution.
Since the double decks provide a mechanism of vis-
cous—inviscid interaction, this allows a large adverse
pressure gradient to be established over a relatively
small region. Therefore, a smooth solution can be
obtained across the collision point. In other words,
the catastrophe of the classical boundary-layer theory,
due to Goldstein’s singularity at the collision point,
is avoided by the introduction of the double-deck
structure.

The numerical method used to solve equations (19)
is almost identical to the one used previously {16, 17].
A central-difference scheme is used for derivatives
with respect to y and a backward scheme is used for
x-derivatives. The grid size of 0.01 was selected after
trials with values of 0.02 and 0.005. The results are
believed to be accurate to the third decimal point.

For x— —oo, the solutions asymptotically
approach
u~y+y(nbe
kx
v~ —y(pbe (26)

P~ —0.8972kb e+
A~be
where k = 0.8972(1 + 7). y(y) satisfies

l//(lV)_

wW=0 @7n

14+a?
and conditions

() y=0, ¢ =y=0, ¢ = —08972°

(i) yo oo, ¥ —1. 28)

Numerical iteration starts at a selected x_, with a
guessed b. The value of b is adjusted until the bound-
ary condition at x_, is satisfied. We found that, for
large o, it is necessary to choose a smaller value of
X _ - This is because the range of upstream influence
decreases as a increases, as indicated by equations
(26).

The lower-deck displacement A(x) is plotted for
¢ = 0°, 30° and 60° in Fig. 4. The range of upstream
influence decreases as ¢ increases in agreement with
the asymptotic solution, equations (26). Equation (25)
is also plotted in Fig. 4 to show that 4(x) asymptot-
ically approaches the downstream condition for
x > 8. For a larger ¢, a greater distance is required
for A(x) to approach the result of equation (25). The
induced pressure is given in Fig. 5. A favorable pres-
sure gradient is developed along the wedge. Down-
stream of the wedge, the pressure starts to recover and
overshoots the ambient pressure before it asymptot-
ically returns to the ambient pressure. A stronger fav-
orable pressure gradient for a larger ¢ is indicated by
the numerical solution. It also has a higher overshoot
and takes a longer distance to merge with the ambient
pressure. The increase of the wall shear and the wake
velocity along y = 0 are presented in Fig. 6. The larger
shear stress at the tip of the wedge for smaller ¢ is the
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FiG. 4. Displacement A(x).
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Fi1G. 5. Pressure distribution.
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FiG. 6. Wall shear and centerline wake velocity.

consequence of the longer distance of the upstream
influence. The centerline wake velocity increases
more slowly for a wedge of larger angle.

It is clear that no recirculating flow has been iden-
tified by the numerical double-deck solution. This
agrees with experimental observation and our expec-
tation. It should be noted that the decreasing distance

HNT 31:3-m

of the upstream influence of the interaction with
increasing wedge angles is expected. This is a conse-
quence of the fact that the natural-convection bound-
ary layers become weaker for a larger wedge angle.
Of course, there is no flow when the half-wedge angle
becomes 90° (a horizontal plane). This rules out the
possibility of using the present problem to discuss a
‘head-on’ collision of two boundary layers. Never-
theless, the present results suggest that the zeroth-
order velocity normal to the direction of a head-on
collision is zero. The collision process cancels the
momentum of the colliding streams, and occurs within
a shorter distance than the axial extent of a double
deck. Further effort is required in order to delineate
the collision flow structure. The above reduction,
however, is in line with the observation of the collision
of natural convection boundary layers above a hori-
zontal cylinder [4].

The drag on one side of the wedge, obtained by
integrating the perturbation of the wall shear from
the boundary-layer solution, is

=" (1 4+a?)V2[0.84, +e%7y¥ 2% 1] (29)
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Table 1. Coefficient for wall shear

tan~!a Ay y 7,
0° 0.4780 0.6528 0.4332
30° 0.3336 0.6075 0.2476
60° 0.0845 0.4616 0.2797 x 107!
80° 0.0011 0.1927 02711 x10°*
where

° (ou
T, = J_oc (*a*; —1>dx

The values for 4,, y and 7, are listed in Table 1. The
numerical solution has been obtained for ¢ up to 85°.

6. DISCUSSION AND CONCLUSION

The collision of two inclined viscous layers driven
by buoyancy has been described. No recirculating
eddies have been indicated, which agrees with exper-
imental observation. The local extra wall shear stress
and heat flux contribute little to the total drag and
heat flux. The importance of the existence of a correct
double-deck solution is not to improve the predictive
capability for such complex flows. The flow structure,
which describes how a viscous layer collides with
another, or with a solid wall, provides a proper mat-
ching principle between two viscous layers upstream
and downstream of the collision point. The solutions
for these viscous layers can then be confidently cal-
culated by a marching technique, since their governing
equations are parabolic differential equations.

The double-deck solution presented in this paper
indicates that the matching of a downstream viscous
layer with an upstream layer can be simply achieved
by aligning them. This is how the natural-convection
boundary layer along a wedge provides an initial con-
dition for the downstream plume. It is believed that
the same matching principle can be applied to other
flows.

The collision is called weak because the flow model
adopted in the paper cannot be extended to a head-
on collision. Further study is required to understand
the flow structure in a head-on collision.

L. S. Yao
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UNE FAIBLE COLLISION DE DEUX COUCHES LIMITES DE CONVECTION NATURELLE

Résumé—La collision de deux couches limites de convection naturelle 4 ’extrémité d’un coin vertical est
considérée pour montrer qu'une structure d’écoulement a double couverture fournit une description
convenable du mécanisme de convection qui est concerné par des problémes de convection avec des
changements brusques de géométrie. La présente théorie différe des travaux précédents qui indiquent
I'existence de régions d’écoulement a recirculation. Cette différence est due au fait que les structures
d’écoulement recirculantes n’existent que pour les écoulements forcés, mais pas pour les couches limites de
convection naturelle ou les jets pariétaux. La solution est obtenue ici par une application appropriée du
théoréme de transposition de Prandtl pour les géométries avec des déplacements finis de solide et elle
convient aux couches limites ascendantes de convection naturelle et au panache thermique descendant.
L’interaction du développement local de pression dans la couverture principale (couche externe) et du
déplacement de la couverture basse (couche interne) déplace la singularité associée aux équations de la
couche limite vers 'endroit ou les couches visqueuses quittent la surface solide.
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EIN SCHWACHER ZUSAMMENSTOSS DER GRENZSCHICHTEN ZWEIER
NATURLICHER KONVEKTIONSSTROMUNGEN

Zusammenfassung—Der ZusammenstoB der Grenzschichten zweier natiirlicher Konvektionsstrémungen
an der Spitze eines senkrechten Keils wird benutzt um zu zeigen, daB eine zweilagige Strdmungsstruktur
eine geeignete Beschreibung des Wirmetransports durch natiirliche Konvektion und vieler Strdmungs-
probleme mit plotzlich wechselnder Geometrie erlaubt. Die vorgestellte Theorie unterscheidet sich von
fritheren Arbeiten, die auf die Existenz von Riickstromgebieten schlieBen lassen. Dabei wurde vollig
vergessen, dafl Riickstrémungen nur in erzwungenen, nicht jedoch in der Grenzschicht natiirlicher Kon-
vektionsstromungen oder bei Wandstrahlen auftreten konnen. Die hier vorgestelite Losung wurde durch
eine Anwendung des PrandtI’schen Uberlagerungstheorems fiir Geometrien mit endlichen Versetzungen
erhalten. Sie ndhert die Grenzschicht stromaufwirts und die Auftriebsfahne stromabwirts in geeigneter
Weise an. Die Wechselwirkung zwischen dem Ortlichen Druck in der Hauptebene {der duBeren Schicht)
und der Verlagerung der unteren Ebene (der inneren Schicht) hebt die Singularitit in den Grenzschicht-
gleichungen dort auf, wo die Grenzschicht die feste Oberfliche verldBt.

CJIABOE B3AMMOJENCTBHE JIBYX CBOBOAHOKOHBEKTUBHBIX MTOrPAHHUYHBIX
CJIOEB

Amvoraums—Ha npumepe B3aHMOACHCTBHA ABYX CBOOOIHOKOHBEKTHBHBIX NOIDAHMYHBIX CII0EB BOIM3M
BEPLUHHBI BEPTHKAILHO PACTIONOXEHHOTO KAMHA MOKa3aHOo, Y70 ¢ MOMOILBIO OBYXCIOHHON CTPYKTYpHI
MOTOKA MOXHO ONMHKCHIBATE MEXaHH3M KOHBCKTHBHOIO TEIUIOOGMEHA BO MHOTHX 3a0avax KOHBEKLMH ¢
Pe3KHM HIMEHEHHEM reoMeTpHH. JlaHHAaA TEOPHS OTAHYAETCH OT MPEUTOXKEHHON panee, KOTopas yKassl-
pana Ra Hanayre obGnacrelt ¢ penupKyaauMed HOTOKa. 3TO OT/HYHE BOSHHKIIO H3-32 HEXEHAAHUN NPHU3-
BaTh TOT (AaKT, YTO PCUMPKYJIANWUOHHBIE MOTOKH MOTYT HMETb MECTO TOJNBKO NPH BHIHYKICHHOM
TEYCHHH, HO He B CBOOOJROKOHBEKTHBHBIX NOTPAHMYHBIX CJIOSX WM NPHCTEHHMIX cTpysx. Hacrosmee
pelieHHe nosydeHo 6yaronaps HCNONBL30BAHMIO TPAHCHO3MIMOHHOM Teopembl [IpanaTins nnst npurpa-
HHYHBIX obnacTelf M XOpOWIO OMHCHLIBAET BOCXOAAUIME CBOGONHOKOHBEKTHBHBIE NOTPAHMYHBIE CIIOH M
ONYCKHBIE MOTOKH B TEIUIOBOM ¢akene. ChA3k MEXIY MPOLECCAMH M3MEHEHHS MECTHOTrO NABJICHHS B
OCHOBHOM CJI0€ (HAPYXHBIH) U HEPEMEILCHHA HHXHETO CJI0S (BHYTPEHHHH) yCTpAaHSeT CHHIYISAPHOCTL B
YPaBHEHHAX IOFPAHHYHOTO CROA 4/1% 0OJACTH CTEKAHUA BA3KHX COEB ¢ TBEPAOH NOBEPXHOCTH.

655



